NOTE

Some phenylantimony and -bismuth dithiocarbamates

As a supplement to our previous report on phenyltin, -lead, and -antimony dithiocarbamates¹, we wish to report that phenylantimony dithiocarbamates and phenylbismuth dithiocarbamates can be prepared by allowing stoichiometric quantities of phenylantimony dichloride² or phenylbismuth dibromide³ to react with the appropriate sodium dithiocarbamate [ammonium phenyldithiocarbamate⁴ in the case of (II)] in chloroform at 25° (Table 1).

Phenylantimony bis(benzyldithiocarbamate) (1) was prepared also (86%) by allowing phenylantimony oxide⁶ (0.005 mole) to react with benzylamine (0.01 mole) and carbon disulfide (50 ml) in chloroform (20 ml) for 15 h at 25°. The reaction of diphenylantimony chloride⁷ (0.0064 mole) with sodium benzyldithiocarbamate¹ (0.0064 mole) in chloroform (50 ml) for 24 h at 25° also gave (I) (17%) rather than the expected diphenylantimony benzyldithiocarbamate. The other products of this reaction were benzyl isothiocyanate (51 % yield based on the 1-benzyl-2-thiobiurca derivative⁸) and bis(diphenylantimony) sulfide (29%). The addition of benzylamine (0.0093 mole) in chloroform (20 ml) to a carbon disulfide (25 ml) solution of bis(diphenylantimony) oxide⁹ (0.004 mole) followed by stirring for 4 h at 25° also gave (1) (36 $\frac{1}{2}$). The other products were benzyl isothiocyanate (43 $\frac{1}{2}$, yield based on the 1-benzyl-2-thiobiurea derivative), bis(diphenylantimony) sulfide (39%), and a trace amount of benzylammonium benzyldithiocarbamate. In an attempt to prepare diphenylantimony phenyldithiocarbamate, diphenylantimony chloride (0.01 mole) was allowed to react with ammonium phenyldithiocarbamate (0.01 mole) in chloroform (50 ml) for 1 h at 25°. The products were phenylantimony bis(phenyldithiocarbamate) (11) (11%), phenyl isothiocyanate (71% based on the 1-phenyl-2-thiobiurea derivative¹⁰), and bis(diphenylantimony) sulfide (62 %).

The reaction of diphenylbismuth chloride¹¹ (0.01 mole) with sodium dimethyldithiocarbamate dihydrate (0.01 mole) in chloroform (50 ml) for 1 h at 25° gave (IX) (84%) instead of the expected diphenylbismuth dimethyldithiocarbamate : the other product was triphenylbismuth (64%). In the preparation of phenylbismuth bis(diethyldithiocarbamate) (X) there was also isolated bismuth tris(diethyldithiocarbamate) (60%), m.p. 185–186° (lit.¹² m.p. 186°), no depression on admixture with a sample, m.p. 188–191°, prepared by allowing bismuth trichloride to react with sodium diethyldithiocarbamate trihydrate. (Found: C, 28.41; H, 4.46; N, 6.45; S, 29.36; mol. wt., 662. C₁₅H₃₀BiN₃S₆ caled.: C, 27.56; H, 4.62; N, 6.43; S, 29.43°₀; mol. wt., 654.) IR : 1490 cm⁻¹(CN). Far IR : 566, 503, 496, 399, 357, and 316 cm⁻¹. UV : λ_{max} 260 m μ (c 7.06 × 10⁴). The reaction of diphenylbismuth chloride (0.01 mole) with sodium diethyldithiocarbamate trihydrate (0.01 mole) in chloroform (50 ml) for 1 h at 25° gave (X) (38%), triphenylbismuth (46%), and bismuth tris(diethyldithiocarbamate) (11%). The formation of (I) and (II) from diphenylantimony chloride and of (IX) and (X) from diphenylbismuth chloride illustrates the ease of cleavage

TABLE													
WARDED HUNNE- GAV MONDAN IANDED	MAHIKI HILINS	(TABNUALLY											
No. R	X	Recrystal. from	M_P^{\bullet}	Yield (")	Cakul. (".,) C H	(°°) H		Found (°_) C H	s. X	Mol. wt. caled. (found?)	CN str. freq. ⁴ (cm ⁻¹)	(utu)	10~4 . Emax
C,H,Sb(SCSNRR), (1) H (1) H (11) H (11) CH, (11) CH, (11) CH, (11) C,H,	CH ₂ C,H, C,H, C,H, C,H, C,H,	Methylene chloride r Acetonitrile Acetonitrile Tetrahydrofuran	135 136 142 144 237 239 148-150 241 244	8 5 5 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	46.90 44.87 32.81 38.79 55.90	3.76 4. 3.20 5. 3.90 6. 3.09 5.	52836	46.80 3.56 45.11 3.16 33.09 3.97 38.56 5.02 55.83 3.52	3.56 5.03 3.16 5.36 3.97 6.38 5.02 5.59 3.52 4.32	563(506) 533° 439(482) 495(475) 688(746)	1490 1495 1508 1488 1488	****	9.01 4.39 5.45 5.45 6.65
C.H.(CI)SHSCSNR; (VI) CH, (VII) C,H, (VIII) C,H,		Accionitrile Ethyl acciate Accionitrile	172 175 90.93 176-178	96 79 44	30.49 34.53 47.68	3.13 3 3.95 3 3.16 2	3.95 31 3.66 34 2.93 45	31.14 3. 34.81 3. 47.40 3.	3.18 4.05 3.99 3.74 3.14 3.24	355(372) 388(396) 479(444)	1531 1504 1488	244 245 245	4.30 3.68 5.31
C,H3Bi(SCSNR ₂); (IN) CH3 (X) C2H5		Acetonitrile Ethanol	210-211 131-133	36	27.32 32.98	3.44 5 4.33 4	5.31 27 4.81 32	27.79 3. 32.98 4.	3.42 5.05 4.37 4.59	528(679)* 1502 583(601)* 1490	1502	259 262	5.93 6.21
 Melting points were determined with a Mel-Temp capillary melting point apparatus and are uncorrected.^b Performed by Dr. G. Weiler and Dr. F. B. Strauss. Microanalytical Laboratory, Oxford, England.^c Performed by Schwarzkopf Microanalytical Laboratory. Woodside 77, N. Y. using the method of Tomlinson⁵ at 37^c. Unless otherwise noted, the solvent was benzene.^d Determined with a Beckman IR8 infrared spectrophotometer using KBr pellets.^c Determined with a Bausch and Lomb Spectronic 505 spectrophotometer using chloroform as solvent.^J Washed with dicthyl ether and benzene.^a Not determined because of insolubility.^b Determined in chlorobenzene.ⁱ 629, determined in chlorobenzene.ⁱ 62, and 681, determined by the Rast method. 	ermined with a ry, Oxford, Er d, the solvent 5 spectrophoto nzene. ' 629, d	a Mel-Temp capillary r Igland. ^e Performed by was benzene. ^d Determit meter using chloroforr tetermined in chlorober	nelting po Schwarzk ned with a n as solve nzene: 66.	int appoint ap	aratus at roanalyt in IR8 in ashed wi 81, deter	ical Lat frared s futh dieth	ncorrec ocratory pectropl tyl ethel oy the R	Wood Noteme	erforme Iside 77, ter using enzene. hod.	d by Dr. G. N. Y. using g KBr pellett * Not detern	Weiler the mel s. * Dete mined b	and Dr. thod of T rmitted y ecause o	F. B. Strauss. omlinson ⁵ at vith a Bausch f insolubility.

of a phenyl group from antimony or bismuth in these reactions.

As has been recently observed for dialkyldithiocarbamate complexes of metal carbonyls¹³, gold dithiocarbamates¹⁴, and dialkyldithiocarbamate complexes of molybdenum (V) and molybdenum (VI)¹⁵, the compounds in Table 1 contain a strong band in the 1488–1531 cm⁻¹ region assignable^{16,17} to the partial C=N bond of the canonical form $[\bar{S}_2C=\bar{N}R_2]^-$. The dithiocarbamate group, as in esters of dithiocarbamic acids, shows strong ultraviolet bands in the regions 275–290 m μ and 245–260 m μ , and weaker absorption in the region 325–360 m μ^{18} . All of the compounds in Table 1 were observed to have a strong absorption in the region 245–262 m μ .

We previously reported that triphenylantimony dichloride converts sodium diorganodithiocarbamates into tetraorganothiuram disulfides¹. We have found that tetraorganothiuram disulfides can be obtained also in high yield by stirring a mixture of triphenylbismuth dichloride (0.005 mole), sodium diorganodithiocarbamate (0.01 mole) and chloroform (50 ml) for 2 h at 25° ; the other products are triphenylbismuth and sodium chloride.

The thermal decomposition of some phenylantimony, and -tin organodithiocarbamates (Table 2) gave the corresponding phenylmetallic sulfide and the

TABLE 2

HIERMAE DECOMPOSITION OF SOME PHENYLANTIMONY AND -TIN ORGANODETHIOCARBAMATES

No.	Dithiocarbamate	Conditions	Sulfide ("" yield)	Thiourea (° _o yichl)	¥ield (°.0*
(1)	C ₆ H ₄ Sb(SCSNHCH ₂ C ₆ H ₄) ₂	0.5 g CH ₃ CN (50 ml) Reflux 4 h	C ₆ H ₅ S58 (75)	1.3-Dibenzyl- thiourea (89)	
(11)	C ₀ H ₅ Sb(SCSNHC ₆ H ₅) ₂	1.0 g CH ₃ CN (50 ml) Reflux 4 h	C ₆ H4SbS (70)	1,3-Diphenyl- thiourea (88)	
(XI)	$(C_6H_5)_3$ SnSCSNHCH $_2C_6H_5$	2.0 g, 130°, 4 h	[(C ₆ H ₅) ₃ Sn] ₂ S (99)		69
(X11)	(C ₆ H ₅) ₂ Sn- (SCSNHCH ₂ C ₆ H ₅) ₂	1.0 g C ₆ H ₆ (50 ml) Reflux 5 h	[(C ₆ H ₅) ₂ SnS] ₃ (86)	1,3-Dibenzyl- thiourea (85)	12
(X111)	(C ₆ H ₅) ₂ Sn- (SCSNHCH ₂ C ₆ H ₅) ₂	3.2 g C ₆ H ₆ (100 ml) Reflux 3 h	[(C ₆ H ₅) ₂ SnS] ₃ (72)	1,3-Dibenzyl- thiourea (35)	52

" The yield of benzyl isothiocyanate is based on the 1-benzyl-2-thiobiurea derivative".

corresponding 1,3-diorganothiourea and/or organo isothiocyanate. (XI) gave benzyl isothiocyanate as previously reported¹. Although (XII) and (XIII) gave benzyl isothiocyanate as previously reported¹, an additional product, 1,3-dibenzylthiourea, was found.

Attempts to prepare triphenyllead, triphenyltin, and diphenyltin phenyldithiocarbamates by allowing stoichiometric quantities of the corresponding organometallic halides to react with ammonium phenyldithiocarbamate in chloroform (50 ml) for 2 h at 25° were unsuccessful. The corresponding organometallic sulfides It was found that phenylmetallic oxides can be readily converted into sulfides by reaction with benzylammonium benzyldithiocarbamate in chloroform at 25° for 24 h (Table 3).

TABLE 3

REACTION OF PHENYLMETALLIC OXIDES WITH BENZYLAMMONIUM BENZYLDITHIOCARBAMATE

Oxide	Sulfide (% yield)	Yield (%)*
Bis(triphenyltin) oxide	Bis(triphenyltin) sulfide (90)	78
Diphenyltin oxide	Diphenyltin sulfide trimer (79)	82
Triphenyllead hydroxide	Bis(triphenyllead) sulfide (93)	78
Diphenyllead oxide	Diphenyllead sulfide trimer (36)	86
Bis(diphenylantimony) oxide	Bis (diphenylantimony) sulfide (96)	86
Phenylantimony oxide	Phenylantimony sulfide (36)	91 [*]

* Yield of 1,3-dibenzylthioures is based on the amount of benzylammonium benzyldithiocarbamate used. * Phenylantimony bis(benzyldithiocarbamate) was also isolated in $6\frac{\theta_0}{2}$ yield.

Acknowledgement

The authors wish to thank Professor HAROLD A. HORAN for the infrared and ultraviolet spectral data.

Department of Chemistry, St. John's University, Jamaica, New York 11432 (U.S.A.) EUGENE J. KUPCHIK CYNTHIA T. THEISEN

-) E. J. KUPCHIK AND P. J. CALABRETTA, Inorg. Chem., 4 (1965) 973.
- 2 M AND T CHEMICALS, INC., Neth. Appl. 6,505,216 (1965); U.S. Appl. (1964); Chem. Abstr., 64 (1966) 9766d.
- 3 F. CHALLUNGER AND C. F. ALLPRESS, J. Chem. Soc., 119 (1921) 913.
- 4 M. FREUND AND G. BACHRACH, Justus Liebigs Ann. Chem., 285 (1895) 184.
- 5 C. TOMLINSON, Mikrachim, Acta, 3 (1961) 457.
- 6 G. O. DUAK AND H. H. JAFFE, J. Amer. Chem. Soc., 71 (1949) 602.
- 7 K. ISSLEIB AND B. HAMANN, Z. Anorg. Allg. Chem., 339 (1965) 298.
- 8 C. K. BRADSHER, F. C. BROWN AND S. T. WEDSTER, J. Org. Chem., 23 (1958) 618.
- 9 F. F. BLICKE, U. O. OAKDALE AND F. D. SMITH, J. Amer. Chem. Soc., 72 (1950) 3025.
- 10 F. ARNDT, E. MILDE AND F. TSCHENSCHER, Ber., 55 (1922) 341.
- 11 P. CHALLENGER AND C. F. ALLPRESS, J. Chem. Soc., 107 (1915) 16.
- 12 L. BODRGEOIS AND J. BOLLE, Mem. Services Chim. Etat (Paris), 34 (1948) 411; Chem. Abstr., 44 (1949) 5814e.
- 13 F. A. COTTON AND J. A. MCCLEVIRTY, Inorg. Chem., 3 (1964) 1398.
- 14 H. J. A. BLAAUW, R. J. F. NIVARD AND G. J. M. VAN DER KERK, J. Organometal. Chem., 2 (1964) 236.
- 15 F. W. MOORB AND M. L. LARSON, Inorg. Chem., 6 (1967) 998.
- 16 J. CHATT, L. A. DUNCANSON AND L. M. VENANZI, Nature, 177 (1956) 1042.
- 17 J. CHATT, L. A. DUNCANSON AND L. M. VENANZI, Suomen Kemi, B29 (1956) 75.
- 18 G. D. THORN AND R. A. LUDWIG, The Dithlocarbamates and Related Compounds, Elsevier, New York, 1962, pp. 54, 55.

Received July 24th, 1967

J. Organometal. Chem., 11 (1968) 627~630